Chapter 3 MATRICES EXERCISE 3.2

Chapter 3 MATRICES EXERCISE 3.2

NCERT Solutions for Class 12 Maths – Chapter 3 – MATRICES EXERCISE 3.2

Answer 1. Matrix Operations

Given matrices:

    A = [2   4]      B = [1   3]       C = [-2   5]
        [3   2]          [-2   5]          [ 3   4]
    

(i) A + B:

    A + B = [2+1   4+3]   = [3   7]
            [3-2   2+5]     [1   7]
    

(ii) A - B:

    A - B = [2-1   4-3] = [1   1]
            [3+2   2-5]   [5  -3]
    

(iii) 3A - C:

    3A - C = 3*[2   4] - [-2   5]       = [6   12] - [-2   5]
               [3   2]     [ 3   4]       [9   6]     [ 3   4]
               
           =  [6+2   12-5]    = [8   7]
              [9-3   6-4]       [6   2]
    

(iv) AB:

    AB = A * B = [2*1+4*(-2)   2*3+4*5] = [2-8   6+20] = [-6   26]
                 [3*1+2*(-2)   3*3+2*5]   [3-4   9+10]   [-1   19]
    

(v) BA:

    BA = B * A = [1*2+3*3   1*4+3*2]     =    [2+9   4+6]       = [11   10]
                 [-2*2+5*3 -2*4+5*2]        [-4+15   -8+10]        [11   2]
    

Answer 2. Matrix Addition

To compute the sum of the matrices:

    [a   b]    [a   b]    [a+a   b+b]    [2a   2b]
    [-b  a] +  [b   a]  = [-b+b  a+a]  = [0    2a]
    

So, the sum of the matrices is:

    [2a   2b]
    [0    2a]
    

(ii) Matrix Addition

To compute the sum of the matrices:

    [a² + b²   b² + c²]     [2ab        2bc]      [a² + b² + 2ab   b² + c² + 2bc]
    [a² + c²   a² + b²]  +  [-2ac      -2ab]  =   [a² + c² - 2ac   a² + b² - 2ab]
    

So, the sum of the matrices is:

    [a² + b² + 2ab   b² + c² + 2bc]
    [a² + c² - 2ac   a² + b² - 2ab]
    

(iii) Matrix Addition

To compute the sum of the matrices:

    [-1  4  -6]   [12  7   6]   [(-1)+12   4+7   (-6)+6]
    [ 8  5  16] + [ 8  0   5] = [ 8+8      5+0    16+5  ]
    [ 2  8   5]   [ 3  2   4]   [ 2+3      8+2     5+4  ]
    

So, the sum of the matrices is:

    [11  11   0]
    [16   5  21]
    [ 5  10   9]
    

(iv) Matrix Addition

To compute the sum of the matrices:

    [cos²(x)   sin²(x)]   [sin²(x)   cos²(x)]   [cos²(x) + sin²(x)   sin²(x) + cos²(x)]
    [sin²(x)   cos²(x)] + [cos²(x)   sin²(x)] = [sin²(x) + cos²(x)   cos²(x) + sin²(x)]
    

Since cos²(x) + sin²(x) = 1 (from trigonometric identity), and sin²(x) + cos²(x) = 1 as well:

    [1   1]
    [1   1]
    

Answer 3.

(i)Matrix Multiplication

To compute the product of the matrices:

    [a  b]    [a  -b]    [a*a + b*(-b)  a*(-b) + b*a]    [a² - b²   -ab + ab]
    [-b a] *  [b   a]  = [-b*a + a*b    (-b)*b + a*a]  = [-ab + ab     a² + b² ]
    

So, the product of the matrices is:

    [a² - b²       0  ]
    [0         a² + b²]
    

(ii) Matrix Multiplication

To compute the product of the matrices:

    [1]    [2  3  4]     
    [2]  *              =
    [3]           
    = [(1*2) + (2*3) + (3*4)]
    = [2 + 6 + 12]
    = [20]
    

Since the first matrix is a column matrix and the second one is a row matrix, we perform dot product:

    [20]
    

(iii) Matrix Multiplication

To compute the product of the matrices:

    [1   -2]  *  [1   2   3]  
    [2    3]     [2   3   1]    
    
    =  [(1*1) + (-2*2)   (1*2) + (-2*3)   (1*3) + (-2*1)]
       [(2*1) + (3*2)    (2*2) + (3*3)    (2*3) + (3*1) ]
       
    = [1 + (-4)   2 + (-6)   3 + (-2) ]
      [2 + 6      4 +  9     6 + 3    ]
                               
    

So, the product of the matrices is:

    [-3   -4   1]
    [8    13   9]
    

(iv) Matrix Multiplication

To compute the product of the matrices:

    [2  3  4]    [1  -3  5]    [(2*1) + (3*0) + (4*3)   (2*(-3)) + (3*2) + (4*0)   (2*5) + (3*4) + (4*5)]
    [3  4  5]  * [0   2  4]  = [ (3*1) + (4*0) + (5*3)  (3*(-3)) + (4*2) + (5*0)   (3*5) + (4*4) + (5*5)]
    [4  5  6]    [3   0  5]    [(4*1) + (5*0) + (6*3)   (4*(-3)) + (5*2) + (6*0)   (4*5) + (5*4) + (6*5)]
    

So, the product of the matrices is:

    [2 + 0 + 12   -6 + 6 + 0   10 + 12 + 20]
    [3 + 0 + 15   -9 + 8 + 0    15 + 16 + 25]
    [4 + 0 + 18   -12 + 10 + 0  20 + 20 + 30]
    

Which simplifies to:

    [14   0   42]
    [18   -1  56]
    [22   -2  70]
    

(v) Matrix Multiplication

To compute the product of the matrices:

    [2  1]    [1  0  1]     [(2*1) + (1*(-1))   (2*0) + (1*2)    (2*1) + (1*1)]
    [3  2]  * [-1  2  1]  = [ (3*1) + (2*(-1))  (3*0) + (2*2)    (3*1) + (2*1)]
    [-1  1]                 [(-1*1) + (1*(-1))  (-1*0) + (1*2)  (-1*1) + (1*1)]
    

So, the product of the matrices is:

    [2 - 1 + 0   0 + 2   2 + 1]
    [3 - 2 + 0   0 + 4   3 + 2]
    [-1 + 1 + 0  0 + 2   -1 + 1]
    

Which simplifies to:

    [1   2   3]
    [1   4   5]
    [0   2   0]
    

(vi) Matrix Multiplication

To compute the product of the matrices:

        [3   -1    3]    [2  -3]   =   [3*2 + (-1)*1 + 3*3    3*(-3) + (-1)*0 + 3*1]
        [-1   0    2]  * [1   0]   =   [-1*2 + 0*1 + 2*3      -1*(-3) + 0*0 + 2*1]
                         [3   1]        
    
                                  =   [6 + (-1) + 9      -3 + 0 + 3]
                                      [-2 + 0 + 6         3 + 0 + 2]
    
                                  =   [14  0]
                                      [4   5]
    

Answer 4.

Matrix Operations

To compute the sum of matrices A and B:

    [1   2   -3]    [3   -1    2]    [1+3   2+(-1)   (-3)+2]
    [5   0    2]  + [4    2    5]  = [5+4   0+2      2+5   ]
    [1  -1    1]    [2    0    3]    [1+2   (-1)+0   1+3   ]
    

So, the sum of matrices A and B is:

    [4   1   -1]
    [9   2    7]
    [3   -1   4 ]
    

To compute the difference of matrices B and C:

    [3   -1   2]    [4    1    2]     [3-4   (-1)-1   2-2]
    [4    2    5]  - [0    3    2]  = [4-0   2-3      5-2]
    [2    0    3]    [1   -2    3]    [2-1   0-(-2)   3-3]
    

So, the difference of matrices B and C is:

    [-1    -2     0]
    [4     -1     3]
    [1      2     0]
    

To verify that A + (B - C) = (A + B) - C:

First, compute A + (B - C):

    (B - C) = [-1   -2     0]
              [4     -1    3]
              [1      2    0]
    (A + (B - C)) = [1   2   -3]    [-1   -2    0]    [1+(-1)   2+(-2)   (-3)+0]
                    [5   0    2]  + [4    -1    3]  = [5+4       0+(-1)     2+3]
                    [1  -1    1]    [1    2     0]    [1+1      (-1)+2     1+0 ]
                  = [0   0   -3]
                    [9  -1    5]
                    [2   1    1]
    

Next, compute (A + B) - C:

    (A + B) = [4   1   -1]
              [9   2    7]
              [3   -1   4 ]
    (A + B) - C = [4   1   -1]      [4   1   -1]     [4-4   1-1      (-1)-(-1)]
                   [9   2    7]  -  [0   3   2 ]  =  [9-0   2-3         7-2   ]
                   [3   -1   4 ]    [1  -2   3 ]     [3-1   (-1)-(-2)   4-3   ]
                 = [0   0   0]
                   [9  -1   5]
                   [2   1   1]
    

Since both matrices are equal, the verification is successful.

Answer 5.

(v) Matrix Operation

To compute the expression 3A - 5B:

First, compute 3A:

    3A = 3 * [2/3   1     5/3]    [3 * (2/3)   3 * 1     3 * (5/3)]
              [1/3   2/3   4/3]  = [3 * (1/3)   3 * (2/3)   3 * (4/3)]
              [7/3   2     2/3]    [3 * (7/3)   3 * 2     3 * (2/3)]
       = [2   3   5]
           [1   2   4]
           [7   6   2]
    

Next, compute 5B:

    5B = 5 * [2/5   3/5   1]    [5 * (2/5)   5 * (3/5)   5 * 1]
              [1/5   2/5   4/5]  = [5 * (1/5)   5 * (2/5)   5 * (4/5)]
              [7/5   6/5   2/5]    [5 * (7/5)   5 * (6/5)   5 * (2/5)]
       = [2   3   5]
           [1   2   4]
           [7   6   2]
    

Now, compute the expression 3A - 5B:

    3A - 5B = [2 - 2   3 - 3   5 - 5]
                  [1 - 1   2 - 2   4 - 4]
                  [7 - 7   6 - 6   2 - 2]
             = [0   0   0]
                   [0   0   0]
                   [0   0   0]
    

So, the result is:

    [0   0   0]
    [0   0   0]
    [0   0   0]
    

Answer 6.

(vi) Matrix Operation

To simplify the expression:

    cosθ * [cosθ    sinθ]    + sinθ *  [sinθ   -cosθ]
           [-sinθ   cosθ]              [cosθ   sinθ]
    

First, distribute the cosθ and sinθ:

    cosθ * [cosθ    sinθ]    +  sinθ * [sinθ   -cosθ] 
           [-sinθ   cosθ]              [cosθ   sinθ]
    =      [cos2θ   cosθsinθ]    +   [sin2θ   -cosθsinθ]
           [-sinθcosθ   cos2θ]       [cosθsinθ   sin2θ]
    

Now, combine the terms:

    [cos2θ + sin2θ    cosθsinθ - cosθsinθ]
    [-sinθcosθ + cosθsinθ   cos2θ + sin2θ]
    

Since cos2θ + sin2θ = 1 and cosθsinθ - cosθsinθ = 0, the expression simplifies to:

    [1    0]
    [0    1]
    

Answer 7.

(i) Matrix Operation

To find X and Y:

We are given two equations:

    X + Y = [7  0]
            [2  5]

    X - Y = [3  0]
            [0  3]
    

Let's add the two equations:

    (X + Y) + (X - Y) = [7  0] + [3  0]
                        [2  5]   [0  3]
    

This simplifies to:

    2X = [10  0]
         [2   8]
    

Dividing both sides by 2:

    X = [5  0]
        [1  4]
    

Now, let's subtract the second equation from the first:

    (X + Y) - (X - Y) = [7  0] - [3  0]
                        [2  5]   [0  3]
    

This simplifies to:

    2Y = [4  0]
         [2  2]
    

Dividing both sides by 2:

    Y = [2  0]
        [1  1]
    

So, X =

    [5  0]
    [1  4]
    

and Y =

    [2  0]
    [1  1]
    

(ii) Matrix Operation

To find X and Y:

We are given two equations:

    2X + 3Y = [2   3]
              [4   0]

    3X + 2Y = [2   -2]
              [-1   5]
    

Multiply the first equation by 3 and the second equation by 2 to make the coefficients of X the same:

    6X + 9Y = [6   9]
              [12  0]

    6X + 4Y = [4   -4]
              [-2   10]
    

Now, subtract the second equation from the first:

    (6X + 9Y) - (6X + 4Y) = [6   9] - [4   -4]
                            [12  0]   [-2   10]
    

This simplifies to:

    5Y = [2   13]
         [14  -10]
    

Dividing both sides by 5:

    Y = [2/5   13/5]
        [14/5   -2]
    

Now, substitute Y into the first equation to solve for X:

    2X + 3 * [2/5   13/5] =            [2   3]
             [14/5   -2]               [4   0]

    2X + [6/5   39/5] =            [2   3]
         [42/5   -6]               [4   0]

    2X = [2   3] - [6/5   39/5]
         [4   0]   [42/5   -6] 

    

    2X = [4/5   -24/5]
         [-22/5   6  ]

    X = [2/5   -12/5]
        [-11/5   3  ]
    

So, X =

    [2/5   -12/5]
    [-11/5   3  ]
    

and Y =

    [2/5   13/5]
    [14/5   -2]